А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
Судьба Великой теоремы Ферма - сочинение

Эта теорема получила известность как «Великая теорема Ферма» (она же «Большая» , она же «Последняя» ). На современном это языке звучит так: не существует отличных от нуля целых чисел x , y и z , для которых имеет место равенство при n> 2 Разумеется, никакого уравнения у Ферма не было. Он вообще не знал знака равенства, а использовал латинское eq. Приводим утверждение Ферма в оригинальном виде: «Куб, однако, на два куба или квадроквадрат на два квадроквадрата и вообще никакую до бесконечности сверх квадрата степень в две того же названия невозможно разделить». И не поставив точку, Ферма приписал:» я открыл поистине удивительное доказательство этого предложения. Но оно не умещается на узких полях.

«Этой фразой Ферма прокомментировал задачу из Диофанта: «Заданный квадрат разложить на два квадрата». Данное замечание является вторым по счету из сделанных им на полях «Арифметики». Первое касалось житейских тем. Неопределенные уравнения (т.е. уравнениями с двумя неизвестными) вида интересовали древних греков в связи с теоремой Пифагора. Они искали (и находили) тройки целых чисел, образующие стороны прямоугольного треугольника. Это означает, что при n =1,2 уравнение в рамке имеет бесчисленное множество решений. Догадка Ферма заключалась в том, что при всех прочих n таких троек не существует. Вряд ли Ферма был первым, кто пришел к подобному выводу. Например, около тысячи лет назад узбекский математик Хамид ал-Хадженди (что означает Хамид из Ленинабада) утверждал, что уравнение x 3 + y 3 = z 3 не имеет решений в целых числах. Сегодня ясно, что Хамид не имел никаких шансов доказать это утверждение. В отношении Ферма достоверно известно, что он доказал «Великую теорему» при n =4 на полях все той же «Арифметики». И это единственное теоретико-числовое доказательство Ферма дошедшее до наших дней.

На протяжении 20 лет Ферма упорно старается привлечь внимание математиков к «Великой теореме» , предлагая частные случаи в качестве задач. Случай n =3 он формулирует в пяти письмах, причем в последнем письме (от августа 1659 г.) пишет, что доказал теорему для n =3 методом спуска. Между тем «Великую теорему» для общего случая n > 2 Ферма сформулировал только один раз в упомянутом замечании на полях «Арифметики». Он не формулирует ее ни разу ни в одном из писем. Он предлагает только частные случаи ( n =3,4) , в отношении которых уверенно говорит, что располагает доказательством. Даже в письме к де Каркави от 1659 г., в котором Ферма перечисляет свои основные достижения, о «Великой теореме» в общем виде нет ни слова. Это может означать только одно: Ферма обнаружил пробелы в своем «поистине удивительном доказательстве» , которые так и не смог устранить. Разумеется, это не охладило потомков.





 
Начиная с конца XVII в. началась невиданная по своей напряженности гонка за доказательством «Великой теоремы Ферма». Обманчивая простота формулировки теоремы обрекла тысячи поклонников математики на бесплодные поиски доказательства или опровержения теоремы. Более ста лет никому из ученых не удавалось продвинуться вперед даже при рассмотрении частных случаев конкретных значений показателя n Первый серьезный результат был получен конечно же Эйлером (1768). Он показал, что случай n =4 уникален. Это единственный частный вариант «Великой теоремы» , когда доказательство имеет вполне элементарный характер. Уже при n =3 возникают значительные осложнения. Настолько существенные, что появляется повод в очередной раз сомневаться в честности Ферма. Эйлер доказал теорему для случая n =3, рассматривая комплексные числа вида, где a, b - целые числа. В XVII в. подобная ересь не могла придти в голову даже Ферма Строго говоря, доказательство Эйлера было дефектным, поскольку он необоснованно перенес ряд свойств обычных чисел на числа вида. В частности он предполагал единственность разложения таких чисел на простые множители. Для устранения пробелов в доказательстве Эйлера понадобились принципиально новые алгебраические абстракции: числовые кольца и поля. Реализацию этой программы начал Гаусс, которому принадлежит первое абсолютно строгое доказательство «Великой теоремы Ферма» для n =3. Доказательство для случая n =5 предложили почти одновременно в атмосфере острого соперничества два француза: Лежен-Дирихле и Лежандр (1825). Оба доказательства были очень сложными. В 1839 г. теорема Ферма была доказана для следующего простого показателя n =7. Это удалось благодаря титаническим усилиям Ламе. Он же в 1847 г. объявил, что доказал теорему для всех простых показателей n >3. Однако бдительный Лиувиль сразу же обнаружил в рассуждениях Ламе ошибку сходную с той, которую допустил Эйлер. Ламе был вынужден признать свое поражение Пока во Франции происходили эти события, в Германии молодой математик Куммер упорно занимается теоремой Ферма. Повторив все ошибки Ламе, он пришел к понятию «идеальных чисел» , для которых разложение на простые множители единственно. Обобщение этого понятия привело к созданию головокружительных абстрактных конструкций, которые сегодня изучаются в специальном разделе алгебре под названием «Теория идеалов». Куммер, посвятивший теореме несколько десятков лет, к концу жизни умел доказывать «Великую теорему Ферма» для всех простых показателей n





Ну а если Вы все-таки не нашли своё сочинение, воспользуйтесь поиском
В нашей базе свыше 20 тысяч сочинений

Сохранить сочинение:

Сочинение по вашей теме Судьба Великой теоремы Ферма. Поищите еще с сайта похожие.

Другие сочинения по зарубежной литературе

Другие сочинения по зарубежной литературе


Сочинение на тему Судьба Великой теоремы Ферма, Другие сочинения по зарубежной литературе